
rra,

PHYSICAL REVIEW E 66, 066610 ~2002!
Composite solitons and two-pulse generation in passively mode-locked lasers modeled
by the complex quintic Swift-Hohenberg equation
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The complex quintic Swift-Hohenberg equation~CSHE! is a model for describing pulse generation in
mode-locked lasers with fast saturable absorbers and a complicated spectral response. Using numerical simu-
lations, we study the single- and two-soliton solutions of the (111)-dimensional complex quintic Swift-
Hohenberg equations. We have found that several types of stationary and moving composite solitons of this
equation are generally stable and have a wider range of existence than for those of the complex quintic
Ginzburg-Landau equation. We have also found that the CSHE has a wider variety of localized solutions. In
particular, there are three types of stable soliton pairs withp andp/2 phase difference and three different fixed
separations between the pulses. Different types of soliton pairs can be generated by changing the parameter
corresponding to the nonlinear gain (e).
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I. INTRODUCTION

Passive mode locking allows the generation of se
shaped ultrashort pulses in a laser system@1#. It has been
explained in a number of works that the pulses generated
mode-locked lasers are solitons@2,3#. Fiber lasers are poten
tially useful in optical communications@4#. Solid state lasers
produce the shortest pulses, down to a few femtoseco
long @5,6#. Apart from all its important applications, th
mode-locked laser is an interesting object for studies, as
a nonlinear system that can have a very rich dynam
Short-pulse lasers are susceptible to various instabilities,
riod doubling@7,8#, pulsating behavior@9#, various routes to
chaos@10–12#, explosive instabilities@13#, and switching to
double-pulse generation@14–16#. Another interesting feature
that can potentially have a variety of applications, is that
generated pulses can have complicated symmetric and a
metric profiles@17# which are also solitons. Thus far, the
have not been observed experimentally. One of the aim
this work is a proposal to facilitate their observation, as w
as the observation of multisoliton solutions.

The convenience of using a single master equation
describing complicated phenomena such as ultrashort-p
generation in laser systems is unquestioned@18#. This can be
done in certain limits that are valid for a variety of las
systems. In the case of a laser with a fast saturable abso
the original equations can be reduced to a single comp
Ginzburg-Landau equation~CGLE!. It has been realized@19#
that the simplest case of the cubic CGLE is not adequate
a realistic description of any actual system. The quintic n
linearity is essential for ensuring the stability of solitonlik
pulses@19#. Another restriction is that spectral filtering in th
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CGLE model is limited to a second-order term and can
scribe only a spectral response with a single maximum. In
experiment, the gain spectrum is usually wide and mi
have several maxima. It is clear that higher-order filteri
terms are essential for both making the model more realis
and for describing more involved pulse generation effec
The addition of a fourth-order spectral filtering term into t
CGLE model transforms it into the complex Swif
Hohenberg equation~CSHE!.

This equation has already been considered in relation
spatial structures in large-aspect lasers@20#. It is also used
for describing instabilities and pattern formation phenome
in cases of Rayleigh-Be´nard convection@21# and in oscillat-
ing chemical reactions@22#. The CSHE is also important in
describing pulse generation processes in passively m
locked lasers with fast saturable absorbers. The higher-o
derivatives are then responsible for higher-order dispers
in the cavity, as well as complicated spectral filtering. T
role of higher-order dispersion effects in soliton formati
has been studied before in Refs.@23–26#. Our task here is to
study dissipative effects, namely, the role of higher-ord
terms in spectral filtering. As far as we know, this has n
been done before.

More specifically, our aim here is to compare the so
tions of the CSHE model with those appearing in the CG
model of a passively mode-locked laser. The two mod
differ in the spectral filtering effect. We may expect th
pulse generation effects in the case of the CSHE mo
would be similar to those in the CGLE model. This is true,
some extent, as we have found in our numerical simulatio
At the same time some additional effects also appear.

The variety of solutions appearing in the CSHE model
a laser is enormous. Any attempt to classify them in o
work would fail. This means that we have to analyze so
limited range of solutions, starting from the known limit o
the CGL equation. The difficulty in doing this with a fourth
©2002 The American Physical Society10-1
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order derivative in the equation is that this term cannot
considered as a perturbation with a small coefficient in fr
of it. When the fourth-order derivative becomes small,
solutions become unstable in the frequency domain. He
we should use physical intuition to consider such a limit.

Although some families of exact solutions of the CSH
can be obtained analytically@27#, it is clear that this equation
can mainly be analyzed only using computer simulatio
This has been done in the majority of the papers publishe
far. For example, Sakaguchi and Brand numerically obser
some solitonlike structures@28#. Localized solutions of the
quintic CSH equation are similar to those observed in s
tems described by the previously studied complex Ginzbu
Landau equation. Let us recall that some analytic soluti
for the cubic and quintic CGLE are known@29–32#. In the
case of the cubic (111)-D equation, analytic solutions de
scribe all possible bright and dark soliton solutions. In co
trast, in the case of the quintic equation, the analytic so
tions of the CGLE represent only a small subclass of
soliton solutions. Moreover, the stable soliton solutions
located outside of this subclass@32#. Therefore, from a prac
tical point of view, useful results can only be obtained n
merically.

We note that, apart from some exceptions, the CGLE g
erally has only isolated solutions@32,33#, i.e., they are fixed
for any particular set of the equation parameters. This pr
erty is fundamental for the whole set of localized solutions
the CGLE. The existence of isolated solutions is one of
basic features of dissipative systems in general. The qua
tive physical foundations of this property are given in R
@34#. Like the CGLE, the CSH equation models dissipat
systems, and we expect that it will have this property.
deed, our numerical simulations support this conjecture.

In this work, we have found a few additional effects th
occur in the CSHE model of a passively mode-locked la
First, we have found that the CSHE has a greater variet
solutions than the CGLE model. Second, composite stat
ary and moving pulses are generated for a wider range
parameters than is the case with the CGLE. Finally, we h
found that three different types of bound soliton states
generated, in contrast to the CGLE where we had only
type.

The rest of the paper is organized as follows. In Sec. II
present the master equation that we are dealing with
discuss the differences between CSHE and CGLE mode
a passively mode-locked laser. Section III presents the de
of our numerical simulations. Sec. IV shows a variety
examples of composite and moving solitons of the CSH
and gives comparisons with the corresponding solutions
the CGLE. Various types of double-pulse solutions and th
possible applications are discussed in Sec. V. Finally Sec
summarizes our main conclusions.

II. MODEL

The CSH equation with the quintic nonlinear term can
written in the form

ic t1zcxx1gcxxxx1jucu2c1xucu4c5 idc, ~1!
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where the four coefficientsz, g, j, andx are complex andd
is real. Equation~1! is written in the form we will refer to as
the generalized CSH equation. Then the quintic CGLE i
particular case of Eq.~1! with the coefficientg being set to
zero. To be consistent with our previous works, we shall
the same notations as for the case of the CGLE@32#, namely,
z5z12 ib,g5g12 ig2 ,j5j12 i e and x5n2 im. Assum-
ing anomalous dispersion and a self-focusing nonlinear
and using a proper normalization, we can always fix the
rametersz1 and j1 to have the valuesz150.5 andj151.
The effects of higher-order dispersion have been studied
lier in Refs.@23–26#. In this work, for simplicity, we ignore
the higher-order dispersion, i.e., we putg150. As a result,
Eq. ~1! can be written in a simpler form:

ic t1
1
2 cxx1ucu2c1nucu4c5 idc1 i eucu2c1 imucu4c

1 ibcxx1 ig2cxxxx. ~2!

Equation~2! has been written in this way so that all nonco
servative terms are on the right-hand side. Notations here
the same as for the CGLE@32# with the only additional term
being ig2cxxxx.

When applied to pulse propagation in a laser system,
interpretation of the variables is the following:t is the propa-
gation distance or the cavity round-trip number~treated as a
continuous variable!, x is the retarded time in a frame o
reference moving with the pulse, the term withe represents
nonlinear gain~or 2-photon absorption if negative!, andd the
difference between linear gain and loss. The spectral filter
is now represented by two coefficientsb and g2 instead of
just one, as was the case for the CGLE.

Equation~2! describes nonconservative systems and t
does not have any conserved quantities. Instead, we
write a balance equation for the pulse energy,Q
5*2`

` ucu2dx. It is

dQ

dt
52E

2`

` Fducu22bU]c

]xU
2

1g2U]2c

]x2U2

1eucu4

1mucu6Gdx. ~3!

For an arbitrary solution, the energy is not conserved a
the integral on the right-hand side is nonzero. However,
any stationary solutions, thet derivative is zero. The first
three terms on the right-hand side of the above equation
termine the spectrally dependent linear losses and they h
to be balanced with the nonlinear gain defined by the t
subsequent terms. Again, compared with the balance e
tion for the CGLE@32#, we can see that the main differenc
between the CSH equation and the CGLE lies in its m
involved spectral filtering term, which includes the term wi
g2. The latter is important in describing more detailed fe
tures of an actual physical problem.

In order for the pulse to be stable in frequency doma
the coefficientg2 must be positive. Thenb can have either
sign, in contrast to the CGLE case whereb had to be posi-
tive. A positive b gives a spectral response with a sing
0-2
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FIG. 1. Spectral filteringT(v)5exp(d2bv22g2v
4) in the two models of a laser:~a! CGLE and~b! CSHE. Parameters of the calculatio

are ~a! b50.6, g250, andd520.1, and~b! b520.3, g250.05, andd520.5.
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maximum, although the actual shape of the filter is m
complicated than in the CGLE model. A negativeb gives a
spectral response with two distinct maxima. This is the c
that will be studied in this work, as it may give some mo
features of solitons in this model. It is clear that the limit
the CGLE model cannot be reached just by takingg2→0, as
the pulses will then obviously be unstable. Thus, we have
discuss this issue in more detail.

For clarity, the spectral filtering effect is shown in Fig.
It is described by the transfer functionT(v)5exp(d2bv2

2g2v
4). The curve in Fig. 1~a! shows the spectral filtering in

the case of the CGL equation~with g250), and the curve in
Fig. 1~b! shows the spectral filtering in the case of the CSH
The curve on the left is a Gaussian, exp(d2bv2), whose
amplitude and width are determined byd and b, respec-
tively. For the CSH equation, the spectral filtering is mo
complicated and depends on three parameters. This allow
to additionally control the value of the minimum in the spe
tral dip and the distance between the two maxima in
spectral response. The addition of a third-order derivative
the right-hand side of Eq.~2! would additionally give some
asymmetry to the spectral filtering. However, this asymme
is beyond our interest in this particular work.

The curve in Fig. 1~a! is calculated for the values of th
parameters in the CGLE, which were chosen in our previ
simulations@35,36#, namely,b50.6, andd520.1. For cal-
culating the right-hand-side curve, we tookg250.05, b5
20.3, andd520.5 in Eq. ~1!. These latter values of th
parameters are chosen in such a way that the total width
the total height of the two spectral responses are not v
different. However, as the spectral profiles are differe
equivalent solutions in the two cases appear at different
ues of the cubic gaine.

III. NUMERICAL SIMULATIONS

We have made our simulations using a split-step Fou
method using the fast Fourier Transform for solving the d
persion and filtering parts (x-derivative terms!. The method
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is standard and has been described elsewhere. To find
stationary solutions of Eq.~1! we used the technique of con
vergence. For a dissipative system, stationary localized s
tions are attractors in the functional space, provided they
stable. We are interested only in stable solutions so th
attractors are the objects of our study.

Any smooth function that is close enough to an act
solution will be transformed into it during its evolution int.
Hence, to find a solution, we can start with some initial co
dition close to a soliton profile and wait while it is tran
formed into a stationary solution. If one or several such
lutions do exist for a given set of parameters, almost a
smooth localized initial condition will produce a soliton. Th
technique is similar to what actually happens in a real la
Any initial state of the system leads to the generation
pulses if the parameters have been chosen correctly. Fin
other solutions requires a more careful choice of the ini
conditions. However, using our previous experience with
solutions of the CGLE@37#, we were able to find a large
variety of solutions.

We are also interested in how the solutions change w
we change the parameters of the CSHE. This task is ea
since, for any increment in the value of a parameter, we
use the solution at the previous value of the parameter as
new initial condition. If the solution changes continuous
when a parameter changes and if it continues to be stab
the new value of the parameter, this technique guarante
quick convergence to the stationary solution. In the prese
of bifurcations this technique is still applicable, but shou
be used more carefully@9#. In this way we have found fami-
lies of localized solutions of the CSHE withe as a variable
parameter.

The choice of other parameters for the simulation h
been dictated by our previous results for the CGL equat
@35,36#. These are values that admit the simultaneous e
tence of the plain soliton pulse~SP!, composite pulse~CP!,
the new composite pulse~NCP!, and moving pulse~MP!.
The only difference between the two models is in the cho
of the parameters for the spectral filtering terms. The la
0-3
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J. M. SOTO-CRESPO AND N. AKHMEDIEV PHYSICAL REVIEW E66, 066610 ~2002!
were chosen as described in the preceding section. More
cisely, we shall consider in the rest of the paper the follow
values for the equation parameters:b520.3, g250.05, n
50, m520.1, d520.5 wherease is variable. The reason
for e being chosen as a variable parameter rather than
other one is that it can be the parameter that controls
stability of solitons in the dissipative system@38#.

Of course, the technique described above does not g
antee that we will find all the solutions that exist for a certa
set of parameters. For example, the CGLE admits a m
plicity of soliton solutions which can be stable or unstab
@39#. No doubt, the same is true for the CSHE. The compl
set of solutions can be found with methods such as the sh
ing technique or equivalent@32,39#. However, our presen
technique allows us not only to obtain the stationary sha
of the solitons but also to confirm their stability. Moreove
the set of the most robust solutions is usually revealed. A
experiments with real lasers, robust structures are initi
generated@13#. Our technique has the advantage of pred
ing unknown phenomena. In this work, we concentrate
single-pulse localized solutions, as well as a coupled se
two plain solitons. Below, we consider them separately
Secs. IV and V respectively.

IV. COMPOSITE AND MOVING SOLITONS

In this section we present the results for single-pulse g
eration. The simplest task was to find plain~sechlike profile!
solitons. They are not shown here as the result is more or
trivial. Any Gaussian or sech-type initial condition wit
width less than 1 and amplitude above 1 generally produ
a plain pulse fore in the interval@0.45,1.75#, especially for
the lower values ofe. In spite of the double-peak spectra
the filter, these pulses have the usual ‘‘sech-type’’ spectra
the whole range of their existence. The spectrum is cente
at the center of the system filter.

For values ofe higher than 1.4, composite pulses appe
profusely. In terms of increasing width, we call them ‘‘com
posite pulses’’~CP! @32# and ‘‘new composite pulses’’~NCP!
@35#. In our simulations, we have found that there are sev
branches of higher-order localized solutions with increas
width. For simplicity, we call them higher-order ‘‘NCP.’’ Nu
merical results for CP and NCP pulses are shown in Fig
and 3. They both have symmetric amplitude profile and z
velocity. They were produced with sech-type initial cond
tions with different widths.

Figure 2 shows the result of propagating the initial con
tion: c(0,x)52.5 sech(x). This initial condition converges
to a pulse with a CP profile. Similar evolution can be see
we excite the pulse with another initial condition reasona
close to the actual solution. The convergence is quick w
some radiation being emitted during the process. After
transition, the pulse propagates without any further chan
The example presented in Fig. 2 shows that the distanc
convergence ist'5.

Figure 3 shows another simulation with an initial cond
tion that is also a sech function but is twice as wide, nam
c(0,x)52.5 sech(x/2). The solution in this case converge
to a pulse with the NCP profile. The width of the pulse
06661
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larger than for the CP and its field amplitude has also m
local maxima. Each of these solutions is a symmetric bou
state consisiting of two fronts with a sink@40# in the middle.

In general, the convergence to CP and NCP pulses in
case of the CSHE model is faster than in the case of
CGLE model. The reason, as we discussed previously, is
spectral feature of the filter. For the chosen values of par
etersb and g2, this function is double peaked as we ha
designed it. As we know from the numerical results for t
CGLE equation@41#, the CP and NCP pulses have also du
peak spectra, even when there is a single-peak spectra
sponse of the system. Thus, the dual-peaked spectrum o
system should allow a higher probability of generating C
and NCP pulses. This is, in fact, what we observe in o
numerical simulations.

Figure 4 shows the spectra of the CP~dashed line! and
NCP ~solid line! pulses presented in Figs. 2 and 3. Th
clearly show the two-peaked structure of these two puls

FIG. 2. Convergence of a sech-type initial condition to a C
soliton. Parameters of the simulation areb520.3, g250.05, e
51.6, n50, m520.1, andd520.5. HereQ538.4.

FIG. 3. Convergence of a sech-type initial condition to an N
soliton. The equation parameters of the simulation are the sam
in Fig. 2. HereQ574.0.
0-4
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COMPOSITE SOLITONS AND TWO-PULSE GENERATION . . . PHYSICAL REVIEW E66, 066610 ~2002!
This feature is similar to the CP and NCP pulses of the C
equation@41#. The spectral response of the system~dotted
line! is also shown for comparison. The spectral profile
the solution in the nonlinear system does not necessa
have to coincide with the spectral response of the syst
However, the similarity facilitates the generation of su
pulses.

In addition to the zero-velocity pulses, we have fou
moving pulses. They are also fixed solutions of the CSH
For a given set of equation parameters, the shape of the p
and the velocity are fixed. A solution usually converges t
moving pulse when the initial condition has an asymme
phase profile. There are many moving pulse solutions. O
example of such pulses is shown in Fig. 5. It was exci
with the initial conditionc(0,x)52.5 sech(x)exp(ix). This
initial condition is symmetric in amplitude but has a pha

FIG. 4. Spectra of the two pulses@CP ~dashed line! and NCP
~solid line!# and spectral filtering of the CSHE~dotted line!. The
parameters are shown in the figure.

FIG. 5. An example of an asymmetric moving pulse fore
51.6. The pulse energy isQ558.9. This solution is marked in Fig
9 by a black dot on the middle branch of the MPs~continuous
lines!.
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asymmetry that corresponds to a certain initial frequen
shift, which in our dispersive medium produces a cor
sponding initial velocity of the pulse. The shape of the
sultant moving pulses is asymmetric with unequal should
It can be considered as a bound state of two fronts and a s
The left-hand-side front is similar to the one for the CP so
ton in Fig. 2 and the right-hand-side front is similar to that
the NCP soliton in Fig. 3. This example suggests that a
riety of combinations is possible.

Another example of a moving pulse is shown in Fig. 6.
was excited with the wider initial conditionc(0,x)
52.5 sech(x/2)exp(i2x). The final stationary solution is als
a bound state of two fronts but the length of the left shoul
is larger than that in Fig. 5. A large variety of moving puls
with different widths exists. In these two cases, pulses
moving to the left. Due to the symmetry of the proble
relative to time,~x! reversal, there are also mirror imag
solutions with the velocity having the opposite sign.

The spectra of these pulses are also asymmetric. They
shown in Fig. 7. They basically consist of two separa
pieces with unequal maxima. When the asymmetry of
spectrum is greater, then the velocity of the pulse is a
higher. Stable moving pulses exist for a range of parame
comparable with those for CP and NCP solutions.

So far we have shown how four different soliton solutio
are excited. There are many more solutions for the same
of values of the equation parameters. Six cases of sol
profiles, comprising the four treated above, symmetric
well as the asymmetric ones, are shown in Fig. 8. They
have a similar central peak, which corresponds to a sink,
an oscillatory structure around it. The solutions differ in t
length of each shoulder around the sink and end with a fr
at each side. The six soliton solutions shown in this figure
stable solutions at the same values of the equation par
eters. Each type of moving pulse has a mirror image solu
that moves in the opposite direction. These are not show
Fig. 8~b!.

Composite pulses and moving pulses can be considere
bound states composed of a sink with a front at each sid

FIG. 6. Another example of an asymmetric moving pulse. P
rametere51.6. The pulse energyQ567.6. This solution is marked
in Fig. 9 by a black dot on the upper branch of the MPs.
0-5
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J. M. SOTO-CRESPO AND N. AKHMEDIEV PHYSICAL REVIEW E66, 066610 ~2002!
it. Due to the oscillating feature of the sink, the fronts can
located at discrete distances. The variation of these sep
tions creates solitons of different widths. Depending on
location of the two fronts, we can have symmetric and asy
metric pulses.

The variety of soliton solutions obtained for the CSH
model is shown in Fig. 9~a! using theQ-e plane. Soliton
branches obtained in the CGLE model are also shown
comparison@Fig. 9~b!#. They have been calculated in ou
previous work@35#. Comparing the two plots, we can se

FIG. 7. Spectra of the two moving pulses shown in Figs
~dashed line! and 6~continuous line!, respectively, and spectral fil
tering of the CSHE~dotted line!. The parameters are shown in th
figure, and coincide with those in previous figures.

FIG. 8. Various soliton profiles,~a! symmetric and~b! asymmet-
ric ~moving solitons!. Parameters are the same as in the previ
figures.
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clearly that there are more soliton branches in the CS
model than in the CGLE model for this set of parameters.
can also notice that the regions of existence and stability
the CP, NCP, and MP pulses are much wider than in the c
of the CGL equation.

To see this, we calculated the relative width of the ran
of existence for each branch of the composite soliton so
tions. We denote the lower and upper limits of this range
emin andemax, respectively. Then the relative width for th
range of existence is defined as

re52
emax2emin

emax1emin
3100%,

provided that bothemin andemax are positive. For example
in the case of the CSHE model, the range of existence for
is re525% of the parametere while in the case of CGLE,
the range of existence for CP is only aroundre510%. Note
the different scales ande values along the horizontal axis i
Figs. 9~a! and 9~b!. This conclusion is similar for all
branches of composite and moving solitons. NCP in
CSHE model exists in the range that covers a relative wi
of re512.5%. This range for NCP in the case of the CGL
model is onlyre51.3%. The conclusion is that the compo
ite and moving solitons are excited more easily in the sys
with the double-peak spectral features. Convergence to th
s

FIG. 9. Various soliton branches in theQ-e plane in the case of
the ~a! CSH equation and~b! CGL equation~from Ref.@37#!. Black
dots in~a! correspond to the examples shown in Figs. 8. Parame
of the simulation in the two cases are the same except for
spectral filtering terms ande.
0-6
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COMPOSITE SOLITONS AND TWO-PULSE GENERATION . . . PHYSICAL REVIEW E66, 066610 ~2002!
solutions is also faster than in the CGLE model. This is a
clearly related to the special characteristics of the dou
peaked spectral filtering in the CSHE model.

It is worth noting that composite pulses have not be
observed in any experiment with a mode-locked laser. T
must be related to the fact that they exist only for a narr
range of parameters. Our present numerical results sug
that experimental observations of same can be facilitate
we use double-peaked spectral filtering in the laser syst
This can be done, for instance, by using an additional Fa
Perot filter in the laser cavity. The actual numbers of the fi
will depend on the type of laser used in the experiment.
the particular case of the laser used in Ref.@42# a spectral
filter with 5 nm of separation between peaks will crea
pulses of'100 fs width. The relative depth of the spectr
filter in our simulations~minimal transmission in the cente
versus maximum at the peaks! is '65%. Our simulations
show that the relative range of values ofe (re) where the
composite pulses exist further increases when increasing
depth.

V. DOUBLE-PULSE GENERATION

Several experimental groups have reported double-
multiple-pulse generation from passively mode-locked las
@14,42–45#. These observations have been made mostly
chance or based on previous numerical simulations. The
sign of reliable sources of pulse trains with high repetiti
rates is one of the goals for achieving high-bit-rate inform
tion transmission in all-optical lines. Therefore any propo
for achieving two- and multiple-pulse generation with fix
separation between the pulses is an important practical is

In our simulations, we have also found that the doub
peak structure of the spectral response could facilitate
generation of double-pulse solutions. The reason is
double-pulse solution with ap phase difference between th
pulses produces a spectrum with two main equal max
that could match the spectral response of the system.
indeed occurs in the numerical simulations.

We started our simulations with an initial condition co
sisting of two single solitons with a small separation betwe
them. This initial condition converges to the two-pulse so
tion if such a solution exists for the chosen set of paramet
Once one double-pulse solution is obtained, the value ofe is
changed and this solution is taken as an initial condition
order to find out for which values ofe this type of solution
remains stable. We used the same set of parameters us
the above simulations, only changing the value ofe. We
obtained three different types of solutions in this way.

There are two types of double-pulse solutions with a
proximatelyp phase difference between the pulses. We
noted them as type-I and type-II solutions. These two so
tions mainly differ in the separation between both puls
They appear at different values ofe, i.e., they are not solu
tions of a given CSHE simultaneously. Moreover, these
lutions are separated ine by an interval~0.68–0.78!. Switch-
ing between these two different types of pulse pairs can
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achieved by changing the parametere across this interval.
Such switching will change the pulse separation from o
fixed value to another. It is worth mentioning that in additio
to the possibility of switching, the stability at the separati
distances here must be higher than the stability of spac
related to gain relaxation phenomena@43#. This is due to the
general fact that dynamical systems with internal resonan
if used as clocks, are more accurate than systems with re
ation oscillations@46#. In particular, the stability of pulse
spacing is higher.

Figure 10~a! shows the spectrum and Fig. 10~b! shows the
phase~dotted line! and intensity~dashed line! profiles of the
type-I double-pulse solution. As expected, the spectrum
the solution consists of two symmetric strong peaks and
additional sidebands. The type-II solution is shown in Fi
10~c! and 10~d!. This solution has more energy in the tw
central spectral peaks and very little in the side lobes.
these pulses appear as a result of convergence of the in
conditions to them after a short length.

In addition to thep dephased pair of soliton solutions
there is a solution having ap/2 phase difference between th
two pulses. An example of this type of solution fore51.1 is
shown in Fig. 11. In~a! we show the phase and intensi
profiles and in~b! its spectrum. For this solution, the pha
profile and the spectrum must be asymmetric@47#.

The energy of the double-pulse structure is close
double the energy of a single soliton but they are not ide
cal. The energyQ versuse for the three types of solution
mentioned above is presented in Fig. 12. The dotted
corresponds to the type-I solutions, and the solid line to
type-II solutions. These two curves cover two separate in
vals ine and do not appear simultaneously. The dashed cu
in this figure corresponds to the solutions with thep/2 phase
difference between the two pulses. Among the two-pulse
lutions, this latter solution has a wider range of existen
than the type-I and type-II solutions, as can be seen from

FIG. 10. The~a! spectrum and~b! phase~dotted line! and inten-
sity ~dashed line! profiles of a type-I double-pulse solution in th
CSHE model ate50.58. ~c! and~d! show the same for the type-I
double-pulse solution ate50.88.
0-7



er
e-

o
i-

u

he

the
een
ee
LE
tion

of
ue
a-

on
ting
gh
ce.
t of
is is
nce
lu-

ent
ity
ons
still
ve

t to

ig.
nd
he

ipe-
the
e

eri-

ct

the
he

ed as
odi-

be

ion,
a

und
two

s of
t is
, as
s
this
ve

oof
not
ith

e

e

pe
t
.

J. M. SOTO-CRESPO AND N. AKHMEDIEV PHYSICAL REVIEW E66, 066610 ~2002!
12. Moreover, it coexists with the type-II solution wherev
this latter solution is stable. It also coexists with the typ
solution in a small interval of values ofe, namely, in
@0.64,0.68#. The solutions labeledp I and p/2 have almost
exactly the energy of two single solitons, while the energy
thep II solutions differs slighlty from that of two single sol
tons as the pulses are then much closer and so suffer a m
stronger interaction that modifies their common tail.

We recall that multiple-pulse generation occurs in t
frame of the CGLE laser model as well@48#. However, these

FIG. 11. The~a! intensity and phase profile and~b! spectrum of
the double-pulse solutions withp/2 phase difference between th
pulses in the CSHE model.

FIG. 12. Energy,Q, versuse for three types of double-puls
solutions. The type-I double-pulse solution withp phase difference
between the solitons is shown by the dotted line, whereas the ty
is shown by a continuous line. The dashed line represents
double-pulse solutions with ap/2 phase difference between them
06661
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have different properties. First, stable pairs of solitons in
CGLE model appear only when the phase difference betw
the pulses isp/2. In the CSHE model there are at least thr
stable types of soliton bound states. Second, in the CG
case, it requires longer propagation distances for the solu
to converge to the stationary state than in the CSHE.

The type-II two-pulse solutions~with p phase difference
between them! are stationary and stable in the interval
values ofe shown in Fig. 12. As we exceed the upper val
of e, they are transformed into pulsating solutions. This fe
ture is similar to single-soliton solutions of the CGL equati
@9#. In the latter case, the stationary pulses become pulsa
ones at the upper edge of their region of stability. Althou
the two effects are similar, there is an important differen
For a single pulse, the upper edge is close to the poin
transition between the existence of pulses and fronts. Th
not the case for the two-pulse solutions of the CSHE. He
the physical reason for the transformation of stationary so
tions into pulsating ones should be different. This pres
transformation is a type of a symmetry breaking instabil
that results in a phase difference between the two solit
and hence in its motion. When the system parameters are
in the region where the single soliton is stable, the abo
instability is not destroying the coupled state but causes i
evolve periodically.

The periodic evolution of these pulses is shown in F
13~a!. Only one half of the period is shown. In the seco
half of the period, the pair returns to its original position. T
energy of the pair versusz for several periods of evolution is
presented in Fig. 13~b! showing the perfect periodicity. As
we can see from these figures, the pulses shift each sem
riod of propagation by an amount approximately equal to
width of the solution. This behavior is similar to that of th
creeping solutions of the CGLE@9#.

The spectrum of this two-pulse solution undergoes p
odic changes as well~see Fig. 14!. It is slightly asymmetric
during the low-velocity part of the evolution due to the fa
that the phase difference is not exactlyp. After each half
period of propagation the larger component swaps to
other side of the solution, as we can see from Fig. 14. T
phase shift and separation between the pulses, measur
the distance between the two maxima, also evolves peri
cally. The periodicity and the values of these changes can
seen from the trajectory shown in Fig. 14~b!. The trajectory
repeats itself exactly at all successive periods of this mot
forming a closed loop. This proves that the solution is
strictly periodic one. The phase difference is centered aro
p, but it oscillates, as does the separation between the
pulses.

The last solution presented here belongs to a wide clas
pulsating soliton solutions which can take various forms. I
an interesting point that the CSHE has pulsating solutions
does the CGLE@9#. The whole class of pulsating solution
deserves careful study. However, we cannot focus on
issue here, and leave it for future work. Instead, we ha
given only one example of a pulsating solution as a pr
that they do exist. We stress that these pulsations are
decaying. Pulsating solutions exist on an equal level w

II
he
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stationary ones, demonstrating the rich dynamics possib
dissipative systems.

We can see from these results that two-pulse generatio
also facilitated by using double-peak spectral filters in mo
locked lasers. Several types of two-pulse structures can
generated. Choosing the parameters of the system, the
can be optimized in order to produce the desired type
pulse pairs or pulse trains with a prescribed separation
phase difference between the pulses. It is remarkable
both phase difference and pulse separation can be contr
by the parameters of the system. The stabilty of the pu
spacing here must be higher than in systems with gain de
tion and recovery@43#. Such a laser would be an ideal sour
of pulses for all-optical high-bit-rate transmission lines.

VI. CONCLUSIONS

In conclusion, we have numerically studied stationary a
moving soliton solutions of the quintic complex Swif
Hohenberg equation. We have found that for a specified
of parameters, the system modeled by this equation usu
has a larger number of soliton solutions than a system m

FIG. 13. Periodic evolution of the two-pulse solution withp
phase difference between the pulses.~a! Two-pulse profile evolution
in half of the period.~b! Energy versust for 2.5 periods of evolu-
tion.
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eled by the complex Ginzburg-Landau equation. This is d
to the more complicated spectral response intrinsic to
CSHE model. Our results provide clues for facilitating
experimental observation of composite pulses that have b
predicted before, but till now have not been observed.
have also found that the CSHE model of passively mo
locked lasers admits a greater variety of soliton bound st
than the CGLE model. In particular, we have numerica
found three different types of stable soliton bound states w
p or p/2 phase difference between the solitons. At cert
values of the parameters, these solutions may become pu
ing. These results suggest the design for an optical p
train generator with controllable phase shift and pulse se
ration between the pulses. This would be an ideal source
all-optical high-bit-rate transmission lines. We believe th
systematic experimental investigation of two- and multip
pulse operation of passively mode-locked lasers with spe
filtering properties is highly desirable.
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FIG. 14. ~a! Evolution of the spectrum of the two-pulse solutio
with p phase difference between the pulses.~b! Phase shift versus
separation between the pulses for this periodic solution.
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