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Composite solitons and two-pulse generation in passively mode-locked lasers modeled
by the complex quintic Swift-Hohenberg equation

; J. M. Soto-Crespb
Instituto de @ptica, CSIC, Serrano 121, 28006 Madrid, Spain

Nail Akhmediev
Optical Sciences Centre, Research School of Physical Sciences and Engineering, The Australian National University, Canberra,
Australian Capital Territory 0200, Australia
(Received 9 August 2002; published 18 December 2002

The complex quintic Swift-Hohenberg equatié@ SHE) is a model for describing pulse generation in
mode-locked lasers with fast saturable absorbers and a complicated spectral response. Using numerical simu-
lations, we study the single- and two-soliton solutions of the- (3-dimensional complex quintic Swift-
Hohenberg equations. We have found that several types of stationary and moving composite solitons of this
equation are generally stable and have a wider range of existence than for those of the complex quintic
Ginzburg-Landau equation. We have also found that the CSHE has a wider variety of localized solutions. In
particular, there are three types of stable soliton pairs witdnd /2 phase difference and three different fixed
separations between the pulses. Different types of soliton pairs can be generated by changing the parameter
corresponding to the nonlinear gain)(
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[. INTRODUCTION CGLE model is limited to a second-order term and can de-
scribe only a spectral response with a single maximum. In an
Passive mode locking allows the generation of self-experiment, the gain spectrum is usually wide and might
shaped ultrashort pulses in a laser sysfdin It has been have several maxima. It is clear that higher-order filtering
explained in a number of works that the pulses generated bigrms are essential for both making the model more realistic,
mode-locked lasers are solitofs3]. Fiber lasers are poten- and for describing more involved pulse generation effects.
tially useful in optical communicatiorg]. Solid state lasers The addition of a fourth-order spectral filtering term into the
produce the shortest pulses, down to a few femtosecondsGLE model transforms it into the complex Swift-
long [5,6]. Apart from all its important applications, the Hohenberg equatiofCSHB. , _ _
mode-locked laser is an interesting object for studies, as itis | NS €quation has already been considered in relation to
a nonlinear system that can have a very rich dynamicsSp"’lt""lI st.ru'ctures |nillalrge-aspect lask28]. It IS also used
Short-pulse lasers are susceptible to various instabilities, pé(-)r describing instabilities and pattern formation phenomena

. . . : . n cases of Rayleigh-Berd convectiori21] and in oscillat-
riod doubling[7,8], pulsating behaviof9], various routes to : : ; ) . .
chaos[10-12, explosive instabilitie$13], and switching to ing chemical reactionf22]. The CSHE is also important in

. . . describing pulse generation processes in passively mode-
double-pulse generatigd4—18. Another interesting feature locked lasers with fast saturable absorbers. The higher-order

that can potentially have a variety_of applicationsz is that the‘derivatives are then responsible for higher-order dispersion
generated pulses can have complicated symmetric and asyfg- the cavity, as well as complicated spectral filtering. The

metric profiles[17] which are also solitons. Thus far, these role of higher-order dispersion effects in soliton formation
have not been observed experimentally. One of the aims Q{35 peen studied before in Refe3—26. Our task here is to
this work is a proposal to facilitate their observation, as wellstydy dissipative effects, namely, the role of higher-order
as the observation of multisoliton solutions. terms in spectral filtering. As far as we know, this has not
The convenience of using a single master equation fopeen done before.
describing complicated phenomena such as ultrashort-pulse More specifically, our aim here is to compare the solu-
generation in laser systems is unquestiofies]. This can be tions of the CSHE model with those appearing in the CGLE
done in certain limits that are valid for a variety of laser model of a passively mode-locked laser. The two models
systems. In the case of a laser with a fast saturable absorbeiiffer in the spectral filtering effect. We may expect that
the original equations can be reduced to a single complepulse generation effects in the case of the CSHE model
Ginzburg-Landau equatici©GLE). It has been realized9]  would be similar to those in the CGLE model. This is true, to
that the simplest case of the cubic CGLE is not adequate fasome extent, as we have found in our numerical simulations.
a realistic description of any actual system. The quintic nonAt the same time some additional effects also appear.
linearity is essential for ensuring the stability of solitonlike  The variety of solutions appearing in the CSHE model of
pulseq 19]. Another restriction is that spectral filtering in the a laser is enormous. Any attempt to classify them in one
work would fail. This means that we have to analyze some
limited range of solutions, starting from the known limit of
*Electronic address: iodsc09@io.cfmac.csic.es the CGL equation. The difficulty in doing this with a fourth-
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order derivative in the equation is that this term cannot bevhere the four coefficients, y, & andy are complex and

considered as a perturbation with a small coefficient in fronis real. Equatior(1) is written in the form we will refer to as

of it. When the fourth-order derivative becomes small, thethe generalized CSH equation. Then the quintic CGLE is a

solutions become unstable in the frequency domain. Hencearticular case of Eq.l) with the coefficienty being set to

we should use physical intuition to consider such a limit.  zero. To be consistent with our previous works, we shall use
Although some families of exact solutions of the CSHEthe same notations as for the case of the CGRH, namely,

can be obtained analytical[27], it is clear that this equation ¢=7,—i8,y=7y,—iv,,é=&,—ie and y=v—iu. Assum-

can mainly be analyzed only using computer simulationsing anomalous dispersion and a self-focusing nonlinearity,

This has been done in the majority of the papers published sand using a proper normalization, we can always fix the pa-

far. For example, Sakaguchi and Brand numerically observethmeters/; and ¢; to have the valueg;=0.5 and&;=1.

some solitonlike structuref28]. Localized solutions of the The effects of higher-order dispersion have been studied ear-

quintic CSH equation are similar to those observed in sysker in Refs.[23—-26. In this work, for simplicity, we ignore

tems described by the previously studied complex Ginzburgthe higher-order dispersion, i.e., we pyt=0. As a result,

Landau equation. Let us recall that some analytic solution&q. (1) can be written in a simpler form:

for the cubic and quintic CGLE are knowW29-32. In the

case of the cubic (£ 1)-D equation, analytic solutions de- i+ 3 x| W20+ v | * =i Sy+iel > p+iu|yl*y

scribe all possible bright and dark soliton solutions. In con- . .

trast, in the case of the quintic equation, the analytic solu- 1Bt Y20 2

tions of the_CGLE represent only a sma_ll subclas_s of ItsEquation(Z) has been written in this way so that all noncon-
soliton solutions. Moreover, the stable soliton solutions arg .\ ~iive terms are on the right-hand side. Notations here are
Ipcated_out3|dg of this subclaf32]. Therefore, from aprac-  ihe same as for the CGLB2] with the only additional term
tical point of view, useful results can only be obtained nu'beingi il

XXXX*

merically. ¢ L
: When applied to pulse propagation in a laser system, the
We note that, apart from some exceptions, the CGLE gen|’nterpretation of the variables is the followingss the propa-

erally has only isolated solutiori82,33, i.e., they are fixed gation distance or the cavity round-trip numtieated as a

fo; a.n); pa:jrtlculart Sﬁt oIhthe quuatlotn [f)zlaran?_etedrs. 'Il'ht|_s pro f(':ontinuous variable x is the retarded time in a frame of
erty 1s lundamenta’ for the whole set ot localized Solutions ol e e ce moving with the pulse, the term withrepresents

Gonlinear gair(or 2-photon absorption if negatiyeand s the

baS|c fea?ures of dlsslpatlve systems in general: The' quaIItEHifference between linear gain and loss. The spectral filtering
tive physical foundations of this property are given in Ref.is now represented by two coefficienssand v, instead of

[34]. Like the CGLE, the CSH equation models d|SS|pat|vejust one, as was the case for the CGLE.

systems, and we expect that it will have this property. In- Equation(2) describes nonconservative systems and thus

de?:’tﬁgrvcgrr;exgarl]:ggﬁfjfgzng\?vpgcrjt dtiglysng?rgf(faggtjéet.hatdoes not have any conserved quantities. Instead, we can
: write a balance equation for the pulse energ®,

occur in the CSHE model of a passively mode-locked Iaser._fx p2dx. Itis
First, we have found that the CSHE has a greater variety of * —= 4 '
solutions than the CGLE model. Second, composite station-

2
ary and moving pulses are generated for a wider range of dQ 2 -

+ eyl

2 2
t v

parameters than is the case with the CGLE. Finally, we have dt
found that three different types of bound soliton states are
generated, in contrast to the CGLE where we had only one 6
The rest of the paper is organized as follows. In Sec. Il we
present the master equation that we are dealing with and ror an arbitrary solution, the energy is not conserved and
discuss the differences between CSHE and CGLE models Ghe integral on the right-hand side is nonzero. However, for
a passively mode-locked laser. Section Ill presents the detallgny stationary solutions, thederivative is zero. The first
of our numerical simulations. Sec. IV shows a variety Ofthree terms on the right-hand side of the above equation de-
examples of composite and moving solitons of the CSHEermine the spectrally dependent linear losses and they have
and gives comparisons with the corresponding solutions ofy pe halanced with the nonlinear gain defined by the two
the CGLE. Various types of double-pulse solutions and theig psequent terms. Again, compared with the balance equa-
possible applications are discussed in Sec. V. Finally Sec. iion for the CGLE[32], we can see that the main difference

NG

yl*-p

Y
ax

dx. 3

summarizes our main conclusions. between the CSH equation and the CGLE lies in its more
involved spectral filtering term, which includes the term with
1. MODEL v,. The latter is important in describing more detailed fea-

tures of an actual physical problem.
The CSH equation with the quintic nonlinear term can be  |n order for the pulse to be stable in frequency domain,
written in the form the coefficienty, must be positive. The can have either
sign, in contrast to the CGLE case whg#ehad to be posi-
i+ Lt Yot El U120+ x|l =164, (1) tive. A positive 8 gives a spectral response with a single
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FIG. 1. Spectral filterind () = exp(6— Bw?— y,0”) in the two models of a lasefa) CGLE and(b) CSHE. Parameters of the calculation
are(a) B=0.6, y,=0, andé=—0.1, and(b) 8=-0.3, y,=0.05, ands=—0.5.

maximum, although the actual shape of the filter is mords standard and has been described elsewhere. To find the
complicated than in the CGLE model. A negatigegives a  stationary solutions of Eq1) we used the technique of con-
spectral response with two distinct maxima. This is the cas@ergence. For a dissipative system, stationary localized solu-
that will be studied in this work, as it may give some moretions are attractors in the functional space, provided they are
features of solitons in this model. It is clear that the limit of stable. We are interested only in stable solutions so these
the CGLE model cannot be reached just by takjgg-0, as  attractors are the objects of our study.
the pulses will then obviously be unstable. Thus, we have to Any smooth function that is close enough to an actual
discuss this issue in more detail. solution will be transformed into it during its evolution tn

For clarity, the spectral filtering effect is shown in Fig. 1. Hence, to find a solution, we can start with some initial con-
It is described by the transfer functiol(w)=exp(@—Bw’  dition close to a soliton profile and wait while it is trans-
—y0%. The curve in Fig. (a) shows the spectral filtering in  formed into a stationary solution. If one or several such so-
the case of the CGL equatigwith y,=0), and the curve in lutions do exist for a given set of parameters, almost any
Fig. 1(b) shows the spectral filtering in the case of the CSHE smooth localized initial condition will produce a soliton. The
The curve on the left is a Gaussian, e¥p(Bw?), whose technique is similar to what actually happens in a real laser.
amplitude and width are determined ldyand B, respec- Any initial state of the system leads to the generation of
tively. For the CSH equation, the spectral filtering is morepulses if the parameters have been chosen correctly. Finding
complicated and depends on three parameters. This allows osher solutions requires a more careful choice of the initial
to additionally control the value of the minimum in the spec-conditions. However, using our previous experience with the
tral dip and the distance between the two maxima in thesolutions of the CGLE37], we were able to find a large
spectral response. The addition of a third-order derivative owariety of solutions.
the right-hand side of Eq2) would additionally give some We are also interested in how the solutions change when
asymmetry to the spectral filtering. However, this asymmetrywe change the parameters of the CSHE. This task is easier,
is beyond our interest in this particular work. since, for any increment in the value of a parameter, we can

The curve in Fig. 1a) is calculated for the values of the use the solution at the previous value of the parameter as the
parameters in the CGLE, which were chosen in our previousew initial condition. If the solution changes continuously
simulationg[35,36], namely,3=0.6, andé= —0.1. For cal- when a parameter changes and if it continues to be stable at
culating the right-hand-side curve, we togk=0.05, 8= the new value of the parameter, this technique guarantees a
—0.3, andé=—-0.5 in Eq.(1). These latter values of the quick convergence to the stationary solution. In the presence
parameters are chosen in such a way that the total width amf bifurcations this technique is still applicable, but should
the total height of the two spectral responses are not verpe used more carefull]. In this way we have found fami-
different. However, as the spectral profiles are differentlies of localized solutions of the CSHE withas a variable
equivalent solutions in the two cases appear at different valparameter.

ues of the cubic gai. The choice of other parameters for the simulation has
been dictated by our previous results for the CGL equation
IIl. NUMERICAL SIMULATIONS [35,36. These are values that admit the simultaneous exis-

tence of the plain soliton pulsSP, composite pulséCP),

We have made our simulations using a split-step Fouriethe new composite pulséNCP), and moving pulsgMP).
method using the fast Fourier Transform for solving the dis-The only difference between the two models is in the choice
persion and filtering partsx(derivative terms The method of the parameters for the spectral filtering terms. The latter
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were chosen as described in the preceding section. More pre-
cisely, we shall consider in the rest of the paper the following
values for the equation parametez=—0.3, v,=0.05, v

=0, u=-0.1, 6=—0.5 whereas is variable. The reason

for e being chosen as a variable parameter rather than any
other one is that it can be the parameter that controls the
stability of solitons in the dissipative syst€i38].

Of course, the technique described above does not guar-
antee that we will find all the solutions that exist for a certain
set of parameters. For example, the CGLE admits a multi-
plicity of soliton solutions which can be stable or unstable
[39]. No doubt, the same is true for the CSHE. The complete
set of solutions can be found with methods such as the shoot-
ing technique or equivalenB2,39. However, our present
technique allows us not only to obtain the stationary shapes
of the solitons but also to confirm their stability. Moreover,
the set of the most robust solutions is usually revealed. As in g5 5. Convergence of a sech-type initial condition to a CP
experiments with real lasers, robust structures are initiallqjiton, parameters of the simulation ge= —0.3, ,=0.05, €
generated13]. Our technique has the advantage of predict-—1 6, ,=0, x=-0.1, ands=—0.5. HereQ=238.4.
ing unknown phenomena. In this work, we concentrate on

i;\?oglre)lzgilrjllsseolli?gr?!z%delz ?,:Iut:,(\jgséoa:]ssxjvgl 315821 Z%%ﬂfzgteslstiﬁfarger than for the CP and its fielq amplitude has al_so more
Secs. |V and V respectivély local maxima. Each of these solutions is a symmetric bound
' ' state consisiting of two fronts with a sifik0] in the middle.
In general, the convergence to CP and NCP pulses in the
IV. COMPOSITE AND MOVING SOLITONS case of the CSHE model is faster than in the case of the
) ) ) CGLE model. The reason, as we discussed previously, is the
In this section we present the results for single-pulse gengpectral feature of the filter. For the chosen values of param-
eration. The simplest task was to find plagechlike profilg eters 8 and v,, this function is double peaked as we have
solitons. They are not shown here as the result is more or |e%signed it. As we know from the numerical results for the
trivial. Any Gaussian or sech-type initial condition with ~g| E equatiorf41], the CP and NCP pulses have also dual-
width less than 1 and amplitude above 1 generally produceﬁeak spectra, even when there is a single-peak spectral re-
a plain pulse fore in the interval[0.45,1.73, especially for  gponse of the system. Thus, the dual-peaked spectrum of the
the Ipwer values ot. In spite of the double-peak spectra of system should allow a higher probability of generating CP
the filter, these pulses have the usual “sech-type” spectra fognq NCP pulses. This is, in fact, what we observe in our
the whole range of their existence. The spectrum is centeregh,merical simulations.
at the center of the system filter. . Figure 4 shows the spectra of the Qifashed ling and
For values ofe higher than 1.4, composite pulses appearycp (solid line) pulses presented in Figs. 2 and 3. They

profusely. In terms of increasing width, we call them “com- ¢jearly show the two-peaked structure of these two pulses.
posite pulses{CP) [32] and “new composite pulsegNCP)

[35]. In our simulations, we have found that there are several
branches of higher-order localized solutions with increasing
width. For simplicity, we call them higher-order “NCP.” Nu-
merical results for CP and NCP pulses are shown in Figs. 2
and 3. They both have symmetric amplitude profile and zero
velocity. They were produced with sech-type initial condi-
tions with different widths.

Figure 2 shows the result of propagating the initial condi-
tion: ¥(0x)=2.5 sechX). This initial condition converges
to a pulse with a CP profile. Similar evolution can be seen if
we excite the pulse with another initial condition reasonably
close to the actual solution. The convergence is quick with
some radiation being emitted during the process. After this
transition, the pulse propagates without any further changes.
The example presented in Fig. 2 shows that the distance of
convergence i$~5.

Figure 3 shows another simulation with an initial condi-
tion that is also a sech function but is twice as wide, namely, FIG. 3. Convergence of a sech-type initial condition to an NCP
#(0x)=2.5 sechx/2). The solution in this case converges soliton. The equation parameters of the simulation are the same as
to a pulse with the NCP profile. The width of the pulse isin Fig. 2. HereQ=74.0.

[ (t,x)]|

[y (t,x)]
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frequency=0/(2m) FIG. 6. Another example of an asymmetric moving pulse. Pa-

rametere=1.6. The pulse energ® =67.6. This solution is marked

FIG. 4. Spectra of the tw Is¢E€P (dashed li d NCP
pectra of the two puls¢EP (dashed ling an in Fig. 9 by a black dot on the upper branch of the MPs.

(solid ling)] and spectral filtering of the CSHElotted ling. The

parameters are shown in the figure. .
asymmetry that corresponds to a certain initial frequency

hift, which in our dispersive medium produces a corre-

. o S
This feature is similar to the CP and NCP pulses of the CGLsponding initial velocity of the pulse. The shape of the re-

equation[41]. The spectral response of the systérotted sultant moving pulses is asymmetric with unequal shoulders.

line) is allso §hown for cpmparison. The spectral profile O.flt can be considered as a bound state of two fronts and a sink.
the squt|on n the_nonllnear system does not necessar|l¥he left-hand-side front is similar to the one for the CP soli-
have 10 CO'”C'd? V.V'th. the s_p_ectral response Of the A Fig. 2 and the right-hand-side front is similar to that in
However, the similarity facilitates the generation of SUChthe NCP soliton in Fig. 3. This example suggests that a va-
pulses. - . riety of combinations is possible.

In addition to the zero-velocity pulses, we have found Another example of a moving pulse is shown in Fig. 6. It

moving pulses. They are also fixed solutions of the CSHEWas excited with the wider initial conditiony(0x)

For a given set of equation parameters, the shape of the puIs:ez_S sechx/2)exp{2x). The final stationary solution is also

and the velocity are fixed. A solution usually converges to_aa bound state of two fronts but the length of the left shoulder

moving pulse when the initial condition has an asymmetncIS larger than that in Fig. 5. A large variety of moving pulses

phase profile. There are many moving pulse solutions. Orzﬁith different widths exists. In these two cases, pulses are

ex;rrlﬁle .Oft.SLIJCh p(l;_lfes 'SOShO_W; 5'” F'% o It WaSTﬁ?(C'te oving to the left. Due to the symmetry of the problem
wi e initial condition#(0x)=2.5 sechk)exp(x). This relative to time,(x) reversal, there are also mirror image

initial condition is symmetric in amplitude but has a phasesolutions with the velocity having the opposite sign.

The spectra of these pulses are also asymmetric. They are
shown in Fig. 7. They basically consist of two separated
pieces with unequal maxima. When the asymmetry of the
spectrum is greater, then the velocity of the pulse is also
higher. Stable moving pulses exist for a range of parameters
comparable with those for CP and NCP solutions.

So far we have shown how four different soliton solutions
are excited. There are many more solutions for the same set
of values of the equation parameters. Six cases of soliton
profiles, comprising the four treated above, symmetric as
well as the asymmetric ones, are shown in Fig. 8. They all

= have a similar central peak, which corresponds to a sink, and

6} an oscillatory structure around it. The solutions differ in the

- = length of each shoulder around the sink and end with a front
05 ' 5 Oo at each side. The six soliton solutions shown in this figure are

stable solutions at the same values of the equation param-

eters. Each type of moving pulse has a mirror image solution
FIG. 5. An example of an asymmetric moving pulse for that moves in the opposite direction. These are not shown in

=1.6. The pulse energy 8=58.9. This solution is marked in Fig. Fig. 8(b).

9 by a black dot on the middle branch of the MR®ntinuous Composite pulses and moving pulses can be considered as

lines). bound states composed of a sink with a front at each side of

X
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FIG. 7. Spectra of the two moving pulses shown in Figs. 5 S sl CP ]
(dashed lingand 6(continuous ling respectively, and spectral fil- rfl ___________________________ MP oo
tering of the CSHEdotted ling. The parameters are showninthe ~  — 77
figure, and coincide with those in previous figures. 20 £ SP -
it. Due to the oscillating feature of the sink, the fronts can be
0 1 1 1

located at discrete distances. The variation of these separa- ) 1 22 23
tions creates solitons of different widths. Depending on the ' e ’

location of the two fronts, we can have symmetric and asym-
metric pulses. FIG. 9. Various soliton branches in tiig e plane in the case of

The variety of soliton solutions obtained for the CSHE the (@) CSH equation an¢b) CGL equationfrom Ref.[37]). Black
model is shown in Fig. @ using theQ-e plane. Soliton dots in(a) correspond to the examples shown in Figs. 8. Parameters
branches obtained in the CGLE model are also shown fo?f the simulation in the two cases are the same except for the
comparison[Fig. ab)]. They have been calculated in our SPectral filtering terms ane.

previous work[35]. Comparing the two plots, we can see clearly that there are more soliton branches in the CSHE

model than in the CGLE model for this set of parameters. We

can also notice that the regions of existence and stability for

the CP, NCP, and MP pulses are much wider than in the case
of the CGL equation.

To see this, we calculated the relative width of the range
of existence for each branch of the composite soliton solu-
tions. We denote the lower and upper limits of this range as
€min @nd €4y, respectively. Then the relative width for the
range of existence is defined as

€ — Emi
o-MaxX M 100%,

€maxT Emin

Pe=

provided that bothe,,;, and €,,,, are positive. For example,
in the case of the CSHE model, the range of existence for CP
is p.=25% of the parametes while in the case of CGLE,
the range of existence for CP is only aroynd=10%. Note
the different scales ané values along the horizontal axis in
Figs. 9a) and 9b). This conclusion is similar for all
branches of composite and moving solitons. NCP in the
6 CSHE model exists in the range that covers a relative width
of p.=12.5%. This range for NCP in the case of the CGLE
FIG. 8. Various soliton profile$a) symmetric andb) asymmet- model is onlyp.=1.3%. The conclusion is that the compos-
ric (moving solitons. Parameters are the same as in the previoudte and moving solitons are excited more easily in the system
figures. with the double-peak spectral features. Convergence to these
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1 T

solutions is also faster than in the CGLE model. This is alsog ! o

clearly related to the special characteristics of the double-g
peaked spectral filtering in the CSHE model. 2
It is worth noting that composite pulses have not beeng osf
observed in any experiment with a mode-locked laser. This=
must be related to the fact that they exist only for a narrow§
range of parameters. Our present numerical results suggez o
that experimental observations of same can be facilitated il
we use double-peaked spectral filtering in the laser system ¢
This can be done, for instance, by using an additional Fabry- UL
Perot filter in the laser cavity. The actual numbers of the filters_ | / {7}
will depend on the type of laser used in the experiment. For % N
the particular case of the laser used in Hd2] a spectral g

(a)

pe

05 1

Normalized spectrum

2n 10 —— T 2r

phase
Iwo(x)I
-
2
phase

filter with 5 nm of separation between peaks will create
pulses of=~100 fs width. The relative depth of the spectral /
filter in our simulationgminimal transmission in the center .
versus maximum at the peakis ~65%. Our simulations

show that the relative range of values ©f(p,) where the FIG. 10. The(a) spectrum andb) phase(dotted ling and inten-
composite pulses exist further increases when increasing thésty (dashed ling profiles of a type-l double-pulse solution in the
depth. CSHE model at=0.58. (c) and(d) show the same for the type-I|

double-pulse solution at=0.88.

V. DOUBLE-PULSE GENERATION achieved by changing the parameteacross this interval.

Several experimental groups have reported double- anﬁuch switching will change the pulse separation from one

. . . xed value to another. It is worth mentioning that in addition
multiple-pulse generation from passively mode-locked Iaser§

. o the possibility of switching, the stability at the separation
[14,42-43. These observ_anons havg bee_n mac_ie mostly b istances here must be higher than the stability of spacing
chance or based on previous numerical simulations. The d

! ) . ) ’ '€ Uf2lated to gain relaxation phenomdda]. This is due to the
sign of reliable sources of pulse trains with high repetitiongenerg| fact that dynamical systems with internal resonances,
rates is one of the goals for achieving high-bit-rate informast ysed as clocks, are more accurate than systems with relax-
tion transmission in all-optical lines. Therefore any proposaltion oscillations[46]. In particular, the stability of pulse
for achieving two- and multiple-pulse generation with fixed spacing is higher.
separation between the pulses is an important practical issue. Figure 1@a) shows the spectrum and Fig.(bpshows the

In our simulations, we have also found that the doublephase(dotted ling and intensity(dashed ling profiles of the
peak structure of the spectral response could facilitate thgpe-1 double-pulse solution. As expected, the spectrum of
generation of double-pulse solutions. The reason is thahe solution consists of two symmetric strong peaks and two
double-pulse solution with & phase difference between the additional sidebands. The type-II solution is shown in Figs.
pulses produces a spectrum with two main equal maximd0(c) and 1Qd). This solution has more energy in the two
that could match the spectral response of the system. Thisentral spectral peaks and very little in the side lobes. All
indeed occurs in the numerical simulations. these pulses appear as a result of convergence of the initial

We started our simulations with an initial condition con- conditions to them after a short length.
sisting of two single solitons with a small separation between In addition to thew dephased pair of soliton solutions,
them. This initial condition converges to the two-pulse solu-there is a solution having &/2 phase difference between the
tion if such a solution exists for the chosen set of parameterswo pulses. An example of this type of solution fex1.1 is
Once one double-pulse solution is obtained, the valueisf  shown in Fig. 11. In(a) we show the phase and intensity
changed and this solution is taken as an initial condition inprofiles and in(b) its spectrum. For this solution, the phase
order to find out for which values of this type of solution profile and the spectrum must be asymmelt4ic].
remains stable. We used the same set of parameters used inThe energy of the double-pulse structure is close to
the above simulations, only changing the valueeofWe  double the energy of a single soliton but they are not identi-
obtained three different types of solutions in this way. cal. The energyQ versuse for the three types of solutions

There are two types of double-pulse solutions with ap-mentioned above is presented in Fig. 12. The dotted line
proximately 7= phase difference between the pulses. We deeorresponds to the type-l solutions, and the solid line to the
noted them as type-l and type-Il solutions. These two solutype-Il solutions. These two curves cover two separate inter-
tions mainly differ in the separation between both pulsesvals ine and do not appear simultaneously. The dashed curve
They appear at different values ef i.e., they are not solu- in this figure corresponds to the solutions with th& phase
tions of a given CSHE simultaneously. Moreover, these sodifference between the two pulses. Among the two-pulse so-
lutions are separated by an interval(0.68—-0.78. Switch- lutions, this latter solution has a wider range of existence
ing between these two different types of pulse pairs can béhan the type-l and type-Il solutions, as can be seen from Fig.
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have different properties. First, stable pairs of solitons in the
CGLE model appear only when the phase difference between
the pulses ist/2. In the CSHE model there are at least three

stable types of soliton bound states. Second, in the CGLE
case, it requires longer propagation distances for the solution
to converge to the stationary state than in the CSHE.

The type-Il two-pulse solutionévith 7 phase difference
between themare stationary and stable in the interval of
values ofe shown in Fig. 12. As we exceed the upper value
of €, they are transformed into pulsating solutions. This fea-
ture is similar to single-soliton solutions of the CGL equation
[9]. In the latter case, the stationary pulses become pulsating
ones at the upper edge of their region of stability. Although
the two effects are similar, there is an important difference.
For a single pulse, the upper edge is close to the point of
transition between the existence of pulses and fronts. This is
not the case for the two-pulse solutions of the CSHE. Hence
the physical reason for the transformation of stationary solu-
tions into pulsating ones should be different. This present
transformation is a type of a symmetry breaking instability
that results in a phase difference between the two solitons
and hence in its motion. When the system parameters are still
in the region where the single soliton is stable, the above

FIG. 11. The(a) intensity and phase profile arft) spectrum of instability is not destroying the coupled state but causes it to
the double-pulse solutions with/2 phase difference between the eyolve periodically.
pulses in the CSHE model. The periodic evolution of these pulses is shown in Fig.

13(a). Only one half of the period is shown. In the second

12. Moreover, it coexists with the type-Il solution wherever half of the period, the pair returns to its original position. The
this latter solution is stable. It also coexists with the type-lenergy of the pair versusfor several periods of evolution is
solution in a small interval of values o namely, in  presented in Fig. 18) showing the perfect periodicity. As
[0.64,0.68. The solutions labeledr, and /2 have almost we can see from these figures, the pulses shift each semipe-
exactly the energy of two single solitons, while the energy ofriod of propagation by an amount approximately equal to the
the ), solutions differs slighlty from that of two single soli- width of the solution. This behavior is similar to that of the
tons as the pulses are then much closer and so suffer a mugkeeping solutions of the CGLP].
stronger interaction that modifies their common tail. The spectrum of this two-pulse solution undergoes peri-

We recall that multiple-pulse generation occurs in theodic changes as welsee Fig. 14 It is slightly asymmetric
frame of the CGLE laser model as wplig]. However, these  during the low-velocity part of the evolution due to the fact

24

pair of pulses

.

¥=0+0.05i ,
£=0.5+0.3i

.
.

.
,

.

w2 A

that the phase difference is not exactly After each half
period of propagation the larger component swaps to the
other side of the solution, as we can see from Fig. 14. The
phase shift and separation between the pulses, measured as
the distance between the two maxima, also evolves periodi-
cally. The periodicity and the values of these changes can be
seen from the trajectory shown in Fig. (4l The trajectory
repeats itself exactly at all successive periods of this motion,
forming a closed loop. This proves that the solution is a
strictly periodic one. The phase difference is centered around
7, but it oscillates, as does the separation between the two
pulses.

The last solution presented here belongs to a wide class of
pulsating soliton solutions which can take various forms. It is
an interesting point that the CSHE has pulsating solutions, as
does the CGLH9]. The whole class of pulsating solutions

FIG. 12. Energy,Q, versuse for three types of double-pulse deserves careful study. However, we cannot focus on this

solutions. The type-I double-pulse solution withphase difference

issue here, and leave it for future work. Instead, we have

between the solitons is shown by the dotted line, whereas the type given only one example of a pulsating solution as a proof
is shown by a continuous line. The dashed line represents ththat they do exist. We stress that these pulsations are not
double-pulse solutions with a/2 phase difference between them. decaying. Pulsating solutions exist on an equal level with
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eled by the complex Ginzburg-Landau equation. This is due
to the more complicated spectral response intrinsic to the
FIG. 13. Periodic evolution of the two-pulse solution with CSHE model. Our results provide clues for facilitating an
phase difference between the pulgesTwo-pulse profile evolution expepmental observaﬂpn of composite pulses that have been
in half of the period.(b) Energy versus for 2.5 periods of evolu- Predicted before, but till now have not been observed. We
tion. have also found that the CSHE model of passively mode-
locked lasers admits a greater variety of soliton bound states
stationary ones, demonstrating the rich dynamics possible if/an the CGLE model. In particular, we have numerically
dissipative systems. found three different types of stable soliton bound states with
We can see from these results that two-pulse generation i& OF 7/2 phase difference between the solitons. At certain
also facilitated by using double-peak spectral filters in modeVvalues of the parameters, these solutions may become pulsat-
locked lasers. Several types of two-pulse structures can HBY. These results suggest the design for an optical pulse
generated. Choosing the parameters of the system, the ladé®in generator with controllable phase shift and pulse sepa-
can be optimized in order to produce the desired type ofation between the pulses. This would be an ideal source for
pulse pairs or pulse trains with a prescribed separation an@ll-optical high-bit-rate transmission lines. We believe that
phase difference between the pulses. It is remarkable th&yStematic experimental investigation of two- and multiple-
both phase difference and pulse separation can be controlld¥Ise operation of passively mode-locked lasers with special
by the parameters of the system. The stabilty of the pulséltering properties is highly desirable.
spacing here must be higher than in systems with gain deple-
tion and recovery43]. Such a laser would be an ideal source ACKNOWLEDGMENTS
of pulses for all-optical high-bit-rate transmission lines.
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